
Contents

1 JavaScript	Basics 3
Overview . 4
Syntax Basics . 4
Operators . 4

Basic Operators . 4
Operations on Numbers & Strings . 5
Logical Operators . 5
Note . 5
Comparison Operators . 6

Conditional Code . 6
Note . 6
Truthy and Falsy Things . 7
Conditional Variable Assignment with The Ternary Operator 7
Switch Statements . 7

Loops . 8
The for loop . 8
The while loop . 9
The do-while loop . 9
Breaking and continuing . 10

Reserved Words . 10
Arrays . 11
Objects . 11
Functions . 12

Using Functions . 12
Self-Executing Anonymous Functions . 13
Functions as Arguments . 13

Testing Type . 13
The this keyword . 14

Note . 15
Scope . 16
Closures . 17

2

1 JavaScript	Basics

Home Smooth CoffeeScript

Formats Markdown PDF HTML

3

http://autotelicum.github.com/Smooth-CoffeeScript/
js-intro.md
js-intro.html

1 JavaScript Basics

Overview

JavaScript is a rich and expressive language in its own right. This section covers the basic concepts of
JavaScript, as well as some frequent pitfalls for people who have not used JavaScript before. While it
will be of particular value to people with no programming experience, even people who have used other
programming languages may benefit from learning about some of the peculiarities of JavaScript.

If you’re interested in learning more about the JavaScript language, I highly recommend JavaScript: The
Good Parts by Douglas Crockford.

Syntax	Basics

Understanding statements, variable naming, whitespace, and other basic JavaScript syntax.

A simple variable declaration

var foo = ’hello world ’;

Whitespace has no meaning outside of quotation marks

var foo = ’hello world ’;

Parentheses indicate precedence

2 * 3 + 5; // returns 11; multiplication happens first
2 * (3 + 5); // returns 16; addition happens first

Tabs enhance readability, but have no special meaning

var foo = function () {
console.log(’hello ’);

};

Operators

Basic	Operators

Basic operators allow you to manipulate values.

Concatenation

var foo = ’hello ’;

var bar = ’world ’;

console.log(foo + ’ ’ + bar); // ’hello world ’

Multiplication and division

2 * 3;
2 / 3;

Incrementing and decrementing

var i = 1;

var j = ++i; // pre -increment: j equals 2; i equals 2
var k = i++; // post -increment: k equals 2; i equals 3

4

1 JavaScript Basics

Operations	on	Numbers	&	Strings

In JavaScript, numbers and strings will occasionally behave in ways you might not expect.

Addition vs. concatenation

var foo = 1;
var bar = ’2’;

console.log(foo + bar); // 12. uh oh

Forcing a string to act as a number

var foo = 1;
var bar = ’2’;

// coerce the string to a number
console.log(foo + Number(bar));

The Number constructor, when called as a function (like above) will have the effect of casting its argument
into a number. You could also use the unary plus operator, which does the same thing:

Forcing a string to act as a number (using the unary-plus operator)

console.log(foo + +bar);

Logical	Operators

Logical operators allow you to evaluate a series of operands using AND and OR operations.

Logical AND and OR operators

var foo = 1;
var bar = 0;
var baz = 2;

foo || bar; // returns 1, which is true
bar || foo; // returns 1, which is true

foo && bar; // returns 0, which is false
foo && baz; // returns 2, which is true
baz && foo; // returns 1, which is true

Though it may not be clear from the example, the || operator returns the value of the first truthy operand,
or, in cases where neither operand is truthy, it’ll return the last of both operands. The && operator returns
the value of the first false operand, or the value of the last operand if both operands are truthy.

Be sure to consult the section called “Truthy and Falsy Things” for more details on which values evaluate
to true and which evaluate to false.

Note

You’ll sometimes see developers use these logical operators for flow control instead of using if state-
ments. For example:

// do something with foo if foo is truthy
foo && doSomething(foo);

// set bar to baz if baz is truthy;
// otherwise , set it to the return
// value of createBar ()
var bar = baz || createBar ();

5

1 JavaScript Basics

This style is quite elegant and pleasantly terse; that said, it can be really hard to read, especially for
beginners. I bring it up here so you’ll recognize it in code you read, but I don’t recommend using it until
you’re extremely comfortable with what it means and how you can expect it to behave.

Comparison	Operators

Comparison operators allow you to test whether values are equivalent or whether values are identical.

Comparison operators

var foo = 1;
var bar = 0;
var baz = ’1’;
var bim = 2;

foo == bar; // returns false
foo != bar; // returns true
foo == baz; // returns true; careful!

foo === baz; // returns false
foo !== baz; // returns true
foo === parseInt(baz); // returns true

foo > bim; // returns false
bim > baz; // returns true
foo <= baz; // returns true

Conditional	Code

Sometimes you only want to run a block of code under certain conditions. Flow control — via if and
else blocks — lets you run code only under certain conditions.

Flow control

var foo = true;
var bar = false;

if (bar) {
// this code will never run
console.log(’hello !’);

}

if (bar) {
// this code won ’t run

} else {
if (foo) {

// this code will run
} else {

// this code would run if foo and bar were both false
}

}

Note

While curly braces aren’t strictly required around single-line if statements, using them consistently, even
when they aren’t strictly required, makes for vastly more readable code.

Be mindful not to define functions with the same name multiple times within separate if/else blocks,
as doing so may not have the expected result.

6

1 JavaScript Basics

Truthy	and	Falsy	Things

In order to use flow control successfully, it’s important to understand which kinds of values are “truthy”
and which kinds of values are “falsy.” Sometimes, values that seem like they should evaluate one way
actually evaluate another.

Values that evaluate to true

’0’;
’any string ’;
[]; // an empty array
{}; // an empty object
1; // any non -zero number

Values that evaluate to false

0;
’’; // an empty string
NaN; // JavaScript ’s ”not -a-number” variable
null;
undefined; // be careful -- undefined can be redefined!

Conditional	Variable	Assignment	with	The	Ternary	Operator

Sometimes you want to set a variable to a value depending on some condition. You could use an if/else
statement, but in many cases the ternary operator is more convenient. [Definition: The ternary operator
tests a condition; if the condition is true, it returns a certain value, otherwise it returns a different value.]

The ternary operator

// set foo to 1 if bar is true;
// otherwise , set foo to 0
var foo = bar ? 1 : 0;

While the ternary operator can be used without assigning the return value to a variable, this is generally
discouraged.

Switch	Statements

Rather than using a series of if/else if/else blocks, sometimes it can be useful to use a switch statement
instead. [Definition: Switch statements look at the value of a variable or expression, and run different
blocks of code depending on the value.]

A switch statement

switch (foo) {

case ’bar ’:
alert(’the value was bar -- yay!’);

break;

case ’baz ’:
alert(’boo baz :(’);

break;

default:
alert(’everything else is just ok ’);

break;

}

7

1 JavaScript Basics

Switch statements have somewhat fallen out of favor in JavaScript, because often the same behavior can
be accomplished by creating an object that has more potential for reuse, testing, etc. For example:

var stuffToDo = {
’bar ’ : function () {

alert(’the value was bar -- yay!’);
},

’baz ’ : function () {
alert(’boo baz :(’);

},

’default ’ : function () {
alert(’everything else is just ok ’);

}
};

if (stuffToDo[foo]) {
stuffToDo[foo]();

} else {
stuffToDo[’default ’]();

}

We’ll look at objects in greater depth later in this chapter.

Loops

Loops let you run a block of code a certain number of times.

Loops

// logs ’try 0’, ’try 1’, ..., ’try 4’
for (var i=0; i<5; i++) {

console.log(’try ’ + i);
}

Note that in Loops even though we use the keyword var before the variable name i, this does not “scope” the variable
i to the loop block. We’ll discuss scope in depth later in this chapter.

The	for	loop

A for loop is made up of four statements and has the following structure:

for ([initialisation]; [conditional]; [iteration])
[loopBody]

The initialisation statement is executed only once, before the loop starts. It gives you an opportunity to
prepare or declare any variables.

The conditional statement is executed before each iteration, and its return value decides whether or not
the loop is to continue. If the conditional statement evaluates to a falsey value then the loop stops.

The iteration statement is executed at the end of each iteration and gives you an opportunity to change
the state of important variables. Typically, this will involve incrementing or decrementing a counter and
thus bringing the loop ever closer to its end.

The loopBody statement is what runs on every iteration. It can contain anything you want. You’ll typically
have multiple statements that need to be executed and so will wrap them in a block ({...}).

Here’s a typical for loop:

A typical for loop

8

1 JavaScript Basics

for (var i = 0, limit = 100; i < limit; i++) {
// This block will be executed 100 times
console.log(’Currently at ’ + i);
// Note: the last log will be ”Currently at 99”

}

The	while	loop

A while loop is similar to an if statement, except that its body will keep executing until the condition
evaluates to false.

while ([conditional]) [loopBody]

Here’s a typical while loop:

A typical while loop

var i = 0;
while (i < 100) {

// This block will be executed 100 times
console.log(’Currently at ’ + i);

i++; // increment i

}

You’ll notice that we’re having to increment the counter within the loop’s body. It is possible to combine
the conditional and incrementer, like so:

A while loop with a combined conditional and incrementer

var i = -1;
while (++i < 100) {

// This block will be executed 100 times
console.log(’Currently at ’ + i);

}

Notice that we’re starting at -1 and using the prefix incrementer (++i).

The	do-while	loop

This is almost exactly the same as the while loop, except for the fact that the loop’s body is executed at
least once before the condition is tested.

do [loopBody] while ([conditional])

Here’s a do-while loop:

A do-while loop

do {

// Even though the condition evaluates to false
// this loop ’s body will still execute once.

alert(’Hi there !’);

} while (false);

These types of loops are quite rare since only few situations require a loop that blindly executes at least
once. Regardless, it’s good to be aware of it.

9

1 JavaScript Basics

Breaking	and	continuing

Usually, a loop’s termination will result from the conditional statement not evaluating to true, but it is
possible to stop a loop in its tracks from within the loop’s body with the break statement.

Stopping a loop

for (var i = 0; i < 10; i++) {
if (something) {

break;
}

}

You may also want to continue the loop without executing more of the loop’s body. This is done using
the continue statement.

Skipping to the next iteration of a loop

for (var i = 0; i < 10; i++) {

if (something) {
continue;

}

// The following statement will only be executed
// if the conditional ’something ’ has not been met
console.log(’I have been reached ’);

}

Reserved	Words

JavaScript has a number of “reserved words,” or words that have special meaning in the language. You
should avoid using these words in your code except when using them with their intended meaning.

abstract boolean break byte

case catch char class

const continue debugger default

delete do double else

enum export extends final

finally float for function

goto if implements import

in instanceof int interface

long native new package

private protected public return

short static super switch

synchronized this throw throws

transient try typeof var

void volatile while with

10

1 JavaScript Basics

Arrays

Arrays are zero-indexed lists of values. They are a handy way to store a set of related items of the same
type (such as strings), though in reality, an array can include multiple types of items, including other
arrays.

A simple array

var myArray = [’hello ’, ’world ’];

Accessing array items by index

var myArray = [’hello ’, ’world ’, ’foo ’, ’bar ’];
console.log(myArray [3]); // logs ’bar ’

Testing the size of an array

var myArray = [’hello ’, ’world ’];
console.log(myArray.length); // logs 2

Changing the value of an array item

var myArray = [’hello ’, ’world ’];
myArray [1] = ’changed ’;

While it’s possible to change the value of an array item as shown in “Changing the value of an array item”, it’s
generally not advised.

Adding elements to an array

var myArray = [’hello ’, ’world ’];
myArray.push(’new ’);

Working with arrays

var myArray = [’h’, ’e’, ’l’, ’l’, ’o’];
var myString = myArray.join(’’); // ’hello ’
var mySplit = myString.split(’’); // [’h’, ’e’, ’l’, ’l’, ’o’]

Objects

Objects contain one or more key-value pairs. The key portion can be any string. The value portion can
be any type of value: a number, a string, an array, a function, or even another object.

[Definition: When one of these values is a function, it’s called a method of the object.] Otherwise, they are
called properties.

As it turns out, nearly everything in JavaScript is an object — arrays, functions, numbers, even strings —
and they all have properties and methods.

Creating an “object literal”

var myObject = {
sayHello : function () {

console.log(’hello ’);
},
myName : ’Rebecca ’

};
myObject.sayHello (); // logs ’hello ’
console.log(myObject.myName); // logs ’Rebecca ’

11

1 JavaScript Basics

Note When creating object literals, you should note that the key portion of each key-value pair can be
written as any valid JavaScript identifier, a string (wrapped in quotes) or a number:

var myObject = {
validIdentifier: 123,
’some string ’: 456,
99999: 789

};

Object literals can be extremely useful for code organization; for more information, read Using Objects
to Organize Your Code by Rebecca Murphey.

Functions

Functions contain blocks of code that need to be executed repeatedly. Functions can take zero or more
arguments, and can optionally return a value.

Functions can be created in a variety of ways:

Function Declaration

function foo() { /* do something */ }

Named Function Expression

var foo = function () { /* do something */ }

I prefer the named function expression method of setting a function’s name, for some rather in-depth and technical
reasons. You are likely to see both methods used in others’ JavaScript code.

Using	Functions

A simple function

var greet = function(person , greeting) {
var text = greeting + ’, ’ + person;
console.log(text);

};
greet(’Rebecca ’, ’Hello ’);

A function that returns a value

var greet = function(person , greeting) {
var text = greeting + ’, ’ + person;
return text;

};

console.log(greet(’Rebecca ’,’hello ’));

A function that returns another function

var greet = function(person , greeting) {
var text = greeting + ’, ’ + person;
return function () { console.log(text); };

};

var greeting = greet(’Rebecca ’, ’Hello ’);
greeting ();

12

http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://blog.rebeccamurphey.com/2009/10/15/using-objects-to-organize-your-code/
http://kangax.github.com/nfe/
http://kangax.github.com/nfe/

1 JavaScript Basics

Self-Executing	Anonymous	Functions

A common pattern in JavaScript is the self-executing anonymous function. This pattern creates a function
expression and then immediately executes the function. This pattern is extremely useful for cases where
you want to avoid polluting the global namespace with your code — no variables declared inside of the
function are visible outside of it.

A self-executing anonymous function

(function (){
var foo = ’Hello world ’;

})();

console.log(foo); // undefined!

Functions	as	Arguments

In JavaScript, functions are “first-class citizens” — they can be assigned to variables or passed to other
functions as arguments. Passing functions as arguments is an extremely common idiom in jQuery.

Passing an anonymous function as an argument

var myFn = function(fn) {
var result = fn();
console.log(result);

};

myFn(function () { return ’hello world ’; }); // logs ’hello world ’

Passing a named function as an argument

var myFn = function(fn) {
var result = fn();
console.log(result);

};

var myOtherFn = function () {
return ’hello world ’;

};

myFn(myOtherFn); // logs ’hello world ’

Testing	Type

JavaScript offers a way to test the “type” of a variable. However, the result can be confusing — for
example, the type of an Array is “object”.

It’s common practice to use the typeof operator when trying to determining the type of a specific value.

Testing the type of various variables

var myFunction = function () {
console.log(’hello ’);

};

var myObject = {
foo : ’bar ’

};

var myArray = [’a’, ’b’, ’c’];

13

1 JavaScript Basics

var myString = ’hello ’;

var myNumber = 3;

typeof myFunction; // returns ’function ’
typeof myObject; // returns ’object ’
typeof myArray; // returns ’object ’ -- careful!
typeof myString; // returns ’string ’;
typeof myNumber; // returns ’number ’

typeof null; // returns ’object ’ -- careful!

if (myArray.push && myArray.slice && myArray.join) {
// probably an array
// (this is called ”duck typing”)

}

if (Object.prototype.toString.call(myArray) === ’[object Array]’) {
// Definitely an array!
// This is widely considered as the most robust way
// to determine if a specific value is an Array.

}

jQuery offers utility methods to help you determine the type of an arbitrary value. These will be covered
later.

The this keyword

In JavaScript, as in most object-oriented programming languages, this is a special keyword that is used
within methods to refer to the object on which a method is being invoked. The value of this is determined
using a simple series of steps:

1. If the function is invoked using Function.call or Function.apply, this will be set to the first argu-
ment passed to call/apply. If the first argument passed to call/apply is null or undefined, this will
refer to the global object (which is the window object in Web browsers).

2. If the function being invoked was created using Function.bind, this will be the first argument that
was passed to bind at the time the function was created.

3. If the function is being invoked as a method of an object, this will refer to that object.

4. Otherwise, the function is being invoked as a standalone function not attached to any object, and
this will refer to the global object.

A function invoked using Function.call
var myObject = {

sayHello : function () {
console.log(’Hi! My name is ’ + this.myName);

},

myName : ’Rebecca ’
};

var secondObject = {
myName : ’Colin ’

};

myObject.sayHello (); // logs ’Hi! My name is Rebecca ’
myObject.sayHello.call(secondObject); // logs ’Hi! My name is Colin ’

14

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/apply
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind

1 JavaScript Basics

A function created using Function.bind
var myName = ’the global object ’,

sayHello = function () {
console.log(’Hi! My name is ’ + this.myName);

},

myObject = {
myName : ’Rebecca ’

};

var myObjectHello = sayHello.bind(myObject);

sayHello (); // logs ’Hi! My name is the global object ’
myObjectHello (); // logs ’Hi! My name is Rebecca ’

A function being attached to an object at runtime
var myName = ’the global object ’,

sayHello = function () {
console.log(’Hi! My name is ’ + this.myName);

},

myObject = {
myName : ’Rebecca ’

},

secondObject = {
myName : ’Colin ’

};

myObject.sayHello = sayHello;
secondObject.sayHello = sayHello;

sayHello (); // logs ’Hi! My name is the global object ’
myObject.sayHello (); // logs ’Hi! My name is Rebecca ’
secondObject.sayHello (); // logs ’Hi! My name is Colin ’

Note

When invoking a function deep within a long namespace, it is often tempting to reduce the amount of
code you need to type by storing a reference to the actual function as a single, shorter variable. It is
important not to do this with instance methods as this will cause the value of this within the function to
change, leading to incorrect code operation. For instance:
var myNamespace = {

myObject : {
sayHello : function () {

console.log(’Hi! My name is ’ + this.myName);
},

myName : ’Rebecca ’
}

};

var hello = myNamespace.myObject.sayHello;

hello (); // logs ’Hi! My name is undefined ’

You can, however, safely reduce everything up to the object on which the method is invoked:

15

1 JavaScript Basics

var myNamespace = {
myObject : {

sayHello : function () {
console.log(’Hi! My name is ’ + this.myName);

},

myName : ’Rebecca ’
}

};

var obj = myNamespace.myObject;

obj.sayHello (); // logs ’Hi! My name is Rebecca ’

Scope

“Scope” refers to the variables that are available to a piece of code at a given time. A lack of understanding
of scope can lead to frustrating debugging experiences.

When a variable is declared inside of a function using the var keyword, it is only available to code inside
of that function — code outside of that function cannot access the variable. On the other hand, functions
defined inside that function will have access to to the declared variable.

Furthermore, variables that are declared inside a function without the var keyword are not local to the
function — JavaScript will traverse the scope chain all the way up to the window scope to find where
the variable was previously defined. If the variable wasn’t previously defined, it will be defined in the
global scope, which can have extremely unexpected consequences;

Functions have access to variables defined in the same scope

var foo = ’hello ’;

var sayHello = function () {
console.log(foo);

};

sayHello (); // logs ’hello ’
console.log(foo); // also logs ’hello ’

Code outside the scope in which a variable was defined does not have access to the variable

var sayHello = function () {
var foo = ’hello ’;
console.log(foo);

};

sayHello (); // logs ’hello ’
console.log(foo); // doesn ’t log anything

Variables with the same name can exist in different scopes with different values

var foo = ’world ’;

var sayHello = function () {
var foo = ’hello ’;
console.log(foo);

};

sayHello (); // logs ’hello ’
console.log(foo); // logs ’world ’

Functions can “see” changes in variable values after the function is defined

16

1 JavaScript Basics

var myFunction = function () {
var foo = ’hello ’;

var myFn = function () {
console.log(foo);

};

foo = ’world ’;

return myFn;
};

var f = myFunction ();
f(); // logs ’world ’ -- uh oh

Scope insanity

// a self -executing anonymous function
(function () {

var baz = 1;
var bim = function () { alert(baz); };
bar = function () { alert(baz); };

})();

console.log(baz); // baz is not defined outside of the function

bar (); // bar is defined outside of the anonymous function
// because it wasn ’t declared with var; furthermore ,
// because it was defined in the same scope as baz ,
// it has access to baz even though other code
// outside of the function does not

bim (); // bim is not defined outside of the anonymous function ,
// so this will result in an error

Closures

Closures are an extension of the concept of scope — functions have access to variables that were available
in the scope where the function was created. If that’s confusing, don’t worry: closures are generally best
understood by example.

In “Functions can”see” changes in variable values after the function is defined”, we saw how functions
have access to changing variable values. The same sort of behavior exists with functions defined within
loops — the function “sees” the change in the variable’s value even after the function is defined, resulting
in all clicks alerting 5.

How to lock in the value of i?

/* this won ’t behave as we want it to; */
/* every click will alert 5 */
for (var i=0; i<5; i++) {

$(’<p>click me </p>’). appendTo(’body ’). click(function () {
alert(i);

});
}

Locking in the value of i with a closure

/* fix: ’close ’ the value of i inside
createFunction , so it won ’t change */

var createFunction = function(i) {
return function () { alert(i); };

17

1 JavaScript Basics

};

for (var i=0; i<5; i++) {
$(’<p>click me </p>’). appendTo(’body ’). click(createFunction(i));

}

Closures can also be used to resolve issues with the this keyword, which is unique to each scope:

Using a closure to access inner and outer object instances simultaneously

var outerObj = {
myName : ’outer ’,
outerFunction : function () {

// provide a reference to outerObj
// through innerFunction ’s closure
var self = this;

var innerObj = {
myName : ’inner ’,
innerFunction : function () {

// logs ’outer inner ’
console.log(self.myName , this.myName);

}
};

innerObj.innerFunction ();

console.log(this.myName); // logs ’outer ’
}

};

outerObj.outerFunction ();

This mechanism can be particularly useful when dealing with callbacks, though in those cases, it is often
better to use Function.bind, which will avoid any overhead associated with scope traversal.

18

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/bind

	JavaScript Basics
	Overview
	Syntax Basics
	Operators
	Basic Operators
	Operations on Numbers & Strings
	Logical Operators
	Note
	Comparison Operators

	Conditional Code
	Note
	Truthy and Falsy Things
	Conditional Variable Assignment with The Ternary Operator
	Switch Statements

	Loops
	The for loop
	The while loop
	The do-while loop
	Breaking and continuing

	Reserved Words
	Arrays
	Objects
	Functions
	Using Functions
	Self-Executing Anonymous Functions
	Functions as Arguments

	Testing Type
	The !this! keyword
	Note

	Scope
	Closures

